Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
1.
Theranostics ; 14(5): 1815-1828, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505611

RESUMO

Peptides are ideal for theranostic development as they afford rapid target accumulation, fast clearance from background tissue, and exhibit good tissue penetration. Previously, we developed a novel series of peptides that presented discreet folding propensity leading to an optimal candidate [68Ga]Ga-DOTA-GA1 ([D-Glu]6-Ala-Tyr-NMeGly-Trp-NMeNle-Asp-Nal-NH2) with 50 pM binding affinity against cholecystokinin-2 receptors (CCK2R). However, we were confronted with challenges of unfavorably high renal uptake. Methods: A structure activity relationship study was undertaken of the lead theranostic candidate. Prudent structural modifications were made to the peptide scaffold to evaluate the contributions of specific N-terminal residues to the overall biological activity. Optimal candidates were then evaluated in nude mice bearing transfected A431-CCK2 tumors, and their biodistribution was quantitated ex vivo. Results: We identified and confirmed that D-Glu3 to D-Ala3 substitution produced 2 optimal candidates, [68Ga]Ga-DOTA-GA12 and [68Ga]Ga-DOTA-GA13. These radiopeptides presented with high target/background ratios, enhanced tumor retention, excellent metabolic stability in plasma and mice organ homogenates, and a 4-fold reduction in renal uptake, significantly outperforming their non-alanine counterparts. Conclusions: Our study identified novel radiopharmaceutical candidates that target the CCK2R. Their high tumor uptake and reduced renal accumulation warrant clinical translation.


Assuntos
Radioisótopos de Gálio , Receptor de Colecistocinina B , Camundongos , Animais , Receptor de Colecistocinina B/metabolismo , Radioisótopos de Gálio/química , Medicina de Precisão , Camundongos Nus , Distribuição Tecidual , Linhagem Celular Tumoral , Peptídeos/química
2.
Mol Pharm ; 21(3): 1382-1389, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38372213

RESUMO

Cathepsin B, a lysosomal protease, is considered as a crucial biomarker for tumor diagnosis and treatment as it is overexpressed in numerous cancers. A stimulus-responsive SF scaffold has been reported to detect the activity of a variety of tumor-associated enzymes. In this work, a small-molecule PET tracer ([68Ga]NOTA-SF-CV) was developed by combining an SF scaffold with a cathepsin B-specific recognition substrate Cit-Val. Upon activation by cathepsin B, [68Ga]NOTA-SF-CV could form the cyclization product in a reduction environment, resulting in reduced hydrophilicity. This unique property could effectively prevent exocytosis of the tracer in cathepsin B-overexpressing tumor cells, leading to prolonged retention and amplified PET imaging signal. Moreover, [68Ga]NOTA-SF-CV had great targeting specificity to cathepsin B. In vivo microPET imaging results showed that [68Ga]NOTA-SF-CV was able to effectively visualize the expression level of cathepsin B in various tumors. Hence, [68Ga]NOTA-SF-CV may be served as a potential tracer for diagnosing cathepsin B-related diseases.


Assuntos
Radioisótopos de Gálio , Neoplasias , Humanos , Radioisótopos de Gálio/química , Catepsina B , Tomografia por Emissão de Pósitrons/métodos , Neoplasias/diagnóstico por imagem , Compostos Radiofarmacêuticos/química , Linhagem Celular Tumoral
3.
Ann Nucl Med ; 38(5): 350-359, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38347280

RESUMO

PURPOSE: Radiolabeled graphene oxide (GO) nanosheets has been one of the most extensively studied nanoplatform for in vivo radioisotope delivery. Herein, we describe the functionalization of the surface of GO nanosheets with Fe3O4 magnetic nanoparticles, cysteine amino acid as an interface ligand, and cadmium telluride quantum dots. MATERIALS AND METHODS: To enable In vivo PET imaging, the GO@Fe3O4-cys-CdTe QDs were labeled with 68Ga to yield [68Ga] Ga-Go@ Fe3O4-Cys-CdTe QDs. Furthermore, serum stability tests were performed and the biological behavior of the nanocomposite was evaluated in rats bearing fibrosarcoma tumor. RESULTS: Liver, blood and tumor were the most accumulated sites at 1 h after the injection, and the radiolabeled nanocomposite as a PET/MRI imaging agent showed fast depletion from body and acceptable tumor uptake. CONCLUSION: Magnetic (Fe3O4) and fluorescent components (CdTe QDs) along with a positron-emitting radionuclide will help to design a multimodal imaging system (PET/MRI/OI) which will offer the advantages of combined imaging techniques and further possible used in localized radionuclide therapy. Overall, [68Ga] Ga-GO@Fe3O4-cys-CdTe QDs nanocomposite shows great promise as a radiolabeled imaging agent owing to high accumulation in tumor region.


Assuntos
Compostos de Cádmio , Fibrossarcoma , Grafite , Pontos Quânticos , Ratos , Animais , Compostos de Cádmio/química , Distribuição Tecidual , Radioisótopos de Gálio/química , Pontos Quânticos/química , Telúrio/química , Tomografia por Emissão de Pósitrons , Radioisótopos , Fibrossarcoma/diagnóstico por imagem , Imagem Multimodal , Imageamento por Ressonância Magnética
4.
J Med Chem ; 67(3): 2165-2175, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38270637

RESUMO

TMTP1 (NVVRQ) has been proven to selectively target various highly metastatic tumor cells. Nonetheless, existing TMTP1 probes encounter challenges such as rapid blood clearance, limited tumor uptake, and inadequate suitability for therapeutic interventions. To overcome these constraints, we designed and synthesized eight peptide probes, employing innovative chemical modification strategies involving d-amino acid modification and retro-inverso isomerization. Notably, [68Ga]TV2 exhibited particularly impressive performance, displaying an 88.88, 76.90, and 90.32% improvement in uptake at 15, 30, and 60 min, respectively, while maintaining a high target-to-nontarget ratio. Further research has demonstrated that [68Ga]TV2 also exhibits remarkable diagnostic potential for detecting in situ microtumors in the liver. The results suggest that through the implementation of innovative chemical modification strategies, we successfully developed a peptide precursor, NOTA-G-NVvRQ, with specific affinity for highly metastatic tumors, enhanced in vivo pharmacokinetic profile, and heightened stability in vivo, rendering it well suited for prospective investigations in combination therapy studies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Radioisótopos de Gálio/química , Aminoácidos , Estudos Prospectivos , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Peptídeos/química
5.
Mol Pharm ; 21(4): 1827-1837, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38291706

RESUMO

Noninvasive imaging of the immune checkpoint protein programmed death ligand 1 (PD-L1; synonyms: CD274, B7-H1) holds great promise to improve patient selection and, thus, response rates for immune checkpoint therapy (ICT) with monoclonal antibodies targeting the PD1/PD-L1 axis. The PD-L1 specific peptide WL12 (cyclo(AcY-(NMe)A-N-P-H-L-Hyp-W-S-W(Me)-(NMe)Nle-(NMe)Nle-O-C)-G-NH2) was functionalized with the Gallium-68 chelator TRAP by means of click chemistry (CuAAC). The resulting conjugate TRAP-WL12 was labeled with Gallium-68 within 16 min, with approximately 90% radiochemical yield and 99% radiochemical purity, affording Ga-68-TRAP-WL12 with molar activities typically exceeding 100 MBq/nmol. This radiotracer was characterized by positron emission tomography (PET) imaging and ex vivo biodistribution in murine xenografts of nontransfected PD-L1 expressing tumor cell lines, MDA-MB-231 (human breast carcinoma), and H2009 (human lung adenocarcinoma). It showed a favorable biodistribution profile with rapid renal clearance and low background (tumor-to-blood ratio = 26.6, 3 h p.i.). Conjugation of the Ga-68-TRAP moiety to WL12 successfully mitigated the nonspecific uptake of this peptide in organs, particularly the liver. This was demonstrated by comparing Ga-68-TRAP-WL12 with the archetypical Ga-68-DOTA-WL12, for which tumor-to-liver ratios of 1.4 and 0.5, respectively, were found. Although immunohistochemistry (IHC) revealed a low PD-L1 expression in MDA-MB-213 and H2009 xenografts that corresponds well to the clinical situation, PET showed high tumor uptakes (6.6 and 7.3% injected activity per gram of tissue (iA/g), respectively) for Ga-68-TRAP-WL12. Thus, this tracer has the potential for routine clinical PD-L1 PET imaging because it detects even very low PD-L1 expression densities with high sensitivity and may open an avenue to replace PD-L1 IHC of biopsies as the standard means to select potential responders for ICT.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Radioisótopos de Gálio/química , Antígeno B7-H1/metabolismo , Xenoenxertos , Distribuição Tecidual , Peptídeos/química , Neoplasias Pulmonares/diagnóstico por imagem , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Pulmão/metabolismo
6.
Eur J Nucl Med Mol Imaging ; 51(6): 1582-1592, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38246910

RESUMO

PURPOSE: Programmed cell death protein ligand 1 (PD-L1) is a crucial biomarker for immunotherapy. However, nearly 70% of patients do not respond to PD-L1 immune checkpoint therapy. Accurate monitoring of PD-L1 expression and quantification of target binding during treatment are essential. In this study, a series of small-molecule radiotracers were developed to assess PD-L1 expression and direct immunotherapy. METHODS: Radiotracers of [68Ga]Ga-D-PMED, [68Ga]Ga-D-PEG-PMED, and [68Ga]Ga-D-pep-PMED were designed based on a 2-methyl-3-biphenyl methanol scaffold and successfully synthesized. Cellular experiments and molecular docking assays were performed to determine their specificity for PD-L1. PD-L1 status was investigated via positron emission tomography (PET) imaging in MC38 tumor models. PET imaging of [68Ga]Ga-D-pep-PMED was performed to noninvasively quantify PD-L1 blocking using an anti-mouse PD-L1 antibody (PD-L1 mAb). RESULTS: The radiosyntheses of [68Ga]Ga-D-PMED, [68Ga]Ga-D-PEG-PMED, and [68Ga]Ga-D-pep-PMED were achieved with radiochemical yields of 87 ± 6%, 82 ± 4%, and 79 ± 9%, respectively. In vitro competition assays demonstrated their high affinities (the IC50 values of [68Ga]Ga-D-PMED, [68Ga]Ga-D-PEG-PMED, and [68Ga]Ga-D-pep-PMED were 90.66 ± 1.24, 160.8 ± 1.35, and 51.6 ± 1.32 nM, respectively). At 120 min postinjection (p.i.) of the radiotracers, MC38 tumors displayed optimized tumor-to-muscle ratios for all radioligands. Owing to its hydrophilic modification, [68Ga]Ga-D-pep-PMED had the highest target-to-nontarget (T/NT) ratio of approximately 6.2 ± 1.2. Interestingly, the tumor/liver ratio was hardly affected by different concentrations of the inhibitor BMS202. We then evaluated the impacts of dose and time on accessible PD-L1 levels in the tumor during anti-mouse PD-L1 antibody treatment. The tumor uptake of [68Ga]Ga-D-pep-PMED significantly decreased with increasing PD-L1 mAb dose. Moreover, after 8 days of treatment with a single antibody, the uptake of [68Ga]Ga-D-pep-PMED in the tumor significantly increased but remained lower than that in the saline group. CONCLUSION: PET imaging with [68Ga]Ga-D-pep-PMED, a small-molecule radiotracer, is a promising tool for evaluating PD-L1 expression and quantifying the target blockade of PD-L1 to assist in the development of effective therapeutic regimens.


Assuntos
Antígeno B7-H1 , Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Animais , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Linhagem Celular Tumoral , Radioisótopos de Gálio/química , Traçadores Radioativos , Humanos , Simulação de Acoplamento Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , Regulação Neoplásica da Expressão Gênica
7.
Eur J Nucl Med Mol Imaging ; 51(6): 1544-1557, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38276986

RESUMO

PURPOSE: Several studies have demonstrated the advantages of heterodimers over their corresponding monomers due to the multivalency effect. This effect leads to an increased number of effective targeted receptors and, consequently, improved tumor uptake. Fibroblast activation protein (FAP) and integrin αvß3 are found to be overexpressed in different components of the tumor microenvironment. In our pursuit of enhancing tumor uptake and retention, we designed and developed a novel peptidic heterodimer that synergistically targets both FAP and integrin αvß3. METHODS: FAP-RGD was synthesized from FAP-2286 and c(RGDfK) through a multi-step organic synthesis. The dual receptor binding property of 68Ga-FAP-RGD was investigated by cell uptake and competitive binding assays. Preclinical pharmacokinetics were determined in HT1080-FAP and U87MG tumor models using micro-positron emission tomography/computed tomography (micro-PET/CT) and biodistribution studies. The antitumor efficacy of 177Lu-FAP-RGD was assessed in U87MG tumor models. The radiation exposure and clinical diagnostic performance of 68 Ga-FAP-RGD were evaluated in healthy volunteers and cancer patients. RESULTS: Bi-specific radiotracer 68Ga-FAP-RGD exhibited high binding affinity for both FAP and integrin αvß3. In comparison to 68Ga-FAP-2286 and 68Ga-RGDfK, 68Ga-FAP-RGD displayed enhanced tumor uptake and longer tumor retention time in preclinical models. 177Lu-FAP-RGD could efficiently suppress the growth of U87MG tumor in vivo when applied at an activity of 18.5 and 29.6 MBq. The effective dose of 68Ga-FAP-RGD was 1.06 × 10-2 mSv/MBq. 68Ga-FAP-RGD demonstrated low background activity and stable accumulation in most neoplastic lesions up to 3 h. CONCLUSION: Taking the advantages of multivalency effect, the bi-specific radiotracer 68Ga-FAP-RGD showed superior tumor uptake and retention compared to its corresponding monomers. Preclinical studies with 68Ga- or 177Lu-labeled FAP-RGD showed favorable image contrast and effective antitumor responses. Despite the excellent performance of 68Ga-FAP-RGD in clinical diagnosis, experimental efforts are currently underway to optimize the structure of FAP-RGD to increase its potential for clinical application in endoradiotherapy.


Assuntos
Endopeptidases , Gelatinases , Integrina alfaVbeta3 , Proteínas de Membrana , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Serina Endopeptidases , Integrina alfaVbeta3/metabolismo , Humanos , Animais , Camundongos , Gelatinases/metabolismo , Linhagem Celular Tumoral , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Distribuição Tecidual , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Feminino , Traçadores Radioativos , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Radioisótopos de Gálio/química , Dimerização
8.
Nucl Med Biol ; 128-129: 108876, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38241936

RESUMO

BACKGROUND: The beneficial role of glucose-dependent insulinotropic polypeptide receptor (GIPR) in weight control and maintaining glucose levels has led to the development of several multi-agonistic peptide drug candidates, targeting GIPR and glucagon like peptide 1 receptor (GLP1R) and/or the glucagon receptor (GCGR). The in vivo quantification of target occupancy by these drugs would accelerate the development of new drug candidates. The aim of this study was to evaluate a novel peptide (GIP1234), based on previously reported ligand DOTA-GIP-C803, modified with a fatty acid moiety to prolong its blood circulation. It would allow higher target tissue exposure and consequently improved peptide uptake as well as in vivo PET imaging and quantification of GIPR occupancy by novel drugs of interest. METHOD: A 40 amino acid residue peptide (GIP1234) was synthesized based on DOTA-GIP-C803, in turn based on the sequences of endogenous GIP and Exendin-4 with specific amino acid modifications to obtain GIPR selectivity. A palmitoyl fatty acid chain was furthermore added at Lys14 via a glutamic acid linker to prolong its blood circulation time by the interaction with albumin. GIP1234 was conjugated with a DOTA chelator at the C-terminal cysteine residue to achieve 68Ga radiolabeling. The resulting PET probe, [68Ga]Ga-DOTA-GIP1234 was evaluated for receptor binding specificity and selectivity using HEK293 cells transfected with human GIPR, GLP1R, or GCGR. Blocking experiments with tirzepatide (2 µM) were conducted using huGIPR HEK293 cells to investigate binding specificity. Ex vivo and in vivo organ distribution of [68Ga]Ga-DOTA-GIP1234 was studied in rats and a pig in comparison to [68Ga]Ga-DOTA-C803-GIP. Binding of [68Ga]Ga-DOTA-GIP1234 to albumin was assessed in situ using polyacrylamide gel electrophoresis (PAGE). The stability was tested in formulation buffer and rat blood plasma. RESULTS: [68Ga]Ga-DOTA-GIP1234 was synthesized with non-decay corrected radiochemical yield of 88 ± 3.7 % and radiochemical purity of 97.8 ± 0.8 %. The molar activity for the radiotracer was 8.1 ± 1.1 MBq/nmol. [68Ga]Ga-DOTA-GIP1234 was stable and maintained affinity to huGIPR HEK293 cells (dissociation constant (Kd) = 40 ± 12.5 nM). The binding of [68Ga]Ga-DOTA-GIP1234 to huGCGR and huGLP1R cells was insignificant. Pre-incubation of huGIPR HEK293 cell sections with tirzepatide resulted in the decrease of [68Ga]Ga-DOTA-GIP1234 binding by close to 90 %. [68Ga]Ga-DOTA-GIP1234 displayed slow blood clearance in pigs with SUV = 3.5 after 60 min. Blood retention of the tracer in rat was 2-fold higher than that of [68Ga]Ga-DOTA-C803-GIP. [68Ga]Ga-DOTA-GIP1234 also demonstrated strong liver uptake in both pig and rat combined with decreased renal excretion. The concentration dependent binding of [68Ga]Ga-DOTA-GIP1234 to albumin was confirmed in situ by PAGE. CONCLUSION: [68Ga]Ga-DOTA-GIP1234 demonstrated nanomolar affinity and selectivity for huGIPR in vitro. Addition of a fatty acid moiety prolonged blood circulation time and tissue exposure in both rat and pig in vivo. However, the liver uptake was also increased which may make PET imaging of abdominal tissues such as pancreas challenging. The investigation of the influence of fatty acid moiety on the biological performance of the peptide ligand paved the way for further rational design of GIPR ligand analogues with improved characteristics.


Assuntos
Radioisótopos de Gálio , Peptídeos , Receptores dos Hormônios Gastrointestinais , Ratos , Humanos , Animais , Suínos , Células HEK293 , Ligantes , Radioisótopos de Gálio/química , Meia-Vida , Peptídeos/química , Albuminas , Aminoácidos
9.
Nucl Med Biol ; 128-129: 108872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38262310

RESUMO

INTRODUCTION: Chelators play a crucial role in the development of metal-based radiopharmaceuticals, and with the continued interest in 68Ga and increasing availability of new radiometals such as 43Sc/47Sc and 45Ti, there is a growing demand for tailored chelators that can form stable complexes with these metals. This work reports the synthesis and characterization of a hexadentate tris-1,2-hydroxypyridonone chelator HOPO-O6-C4 and its in vitro and in vivo evaluation with the above mentioned radiometals. METHODS: To investigate the affinity of HOPO-O6-C4, macroscopic studies were performed with Sc3+, and Ga3+ followed by DFT structural optimization of the Sc3+, Ga3+ and Ti4+ complexes. Further tracer studies with 43Sc (and 47Sc), 45Ti, and 68Ga were performed to determine the potential for positron emission tomography (PET) imaging with these complexes. In vitro stability studies followed by in vivo imaging and biodistribution studies were performed to understand the kinetic stability of the resultant radiometal-complexes of HOPO-O6-C4. RESULTS: Promising radiolabeling results with HOPO-O6-C4 were obtained with 43Sc, 47Sc, 45Ti, and 68Ga radionuclides; rapid radiolabeling was observed at 37 °C and pH 7 in under 30-min. Apparent molar activity measurements were performed for radiolabeling of HOPO-O6-C4 with 43Sc (4.9 ± 0.26 GBq/µmol), 47Sc (1.58 ± 0.01 GBq/µmol), 45Ti (11.5 ± 1.6 GBq/µmol) and 68Ga (5.74 ± 0.7 GBq/µmol), respectively. Preclinical in vivo imaging studies resulted in promising results with [68Ga]Ga-HOPO-O6-C4 indicating a rapid clearance through hepatic excretion route and no decomplexation whereas [43Sc]Sc-HOPO-O6-C4, [47Sc]Sc-HOPO-O6-C4 and [45Ti]Ti-HOPO-O6-C4 showed modest and significant evidence of decomplexation, respectively. CONCLUSIONS: The tris-1,2-HOPO chelator HOPO-O6-C4 is a promising scaffold for elaboration into a 68Ga- based radiopharmaceutical.


Assuntos
Radioisótopos de Gálio , Piridonas , Compostos Radiofarmacêuticos , Compostos Radiofarmacêuticos/química , Radioisótopos de Gálio/química , Distribuição Tecidual , Titânio , Tomografia por Emissão de Pósitrons , Quelantes/química
10.
J Nucl Med ; 65(1): 33-39, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37945383

RESUMO

Because of the need for radiolabeled theranostics for the detection and treatment of medullary thyroid cancer (MTC), and the yet unresolved stability issues of minigastrin analogs targeting the cholecystokinin-2 receptor (CCK-2R), our aim was to address in vivo stability, our motivation being to develop and evaluate DOTA-CCK-66 (DOTA-γ-glu-PEG3-Trp-(N-Me)Nle-Asp-1-Nal-NH2, PEG: polyethylene glycol) and DOTA-CCK-66.2 (DOTA-glu-PEG3-Trp-(N-Me)Nle-Asp-1-Nal-NH2), both derived from DOTA-MGS5 (DOTA-glu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1-Nal-NH2), and clinically translate [68Ga]Ga-DOTA-CCK-66. Methods: 64Cu and 67Ga labeling of DOTA-CCK-66, DOTA-CCK-66.2, and DOTA-MGS5 was performed at 90°C within 15 min (1.0 M NaOAc buffer, pH 5.5, and 2.5 M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, respectively). 177Lu labeling of these 3 compounds was performed at 90°C within 15 min (1.0 M NaOAc buffer, pH 5.5, 0.1 M sodium ascorbate). CCK-2R affinity of natGa/natCu/natLu-labeled DOTA-CCK-66, DOTA-CCK-66.2, and DOTA-MGS5 was examined on AR42J cells. The in vivo stability of 177Lu-labeled DOTA-CCK-66 and DOTA-MGS5 was examined at 30 min after injection in CB17-SCID mice. Biodistribution studies at 1 h ([67Ga]Ga-DOTA-CCK-66) and 24 h ([177Lu]Lu-DOTA-CCK-66/DOTA-MGS5) after injection were performed on AR42J tumor-bearing CB17-SCID mice. In a translation to the human setting, [68Ga]Ga-DOTA-CCK-66 was administered and whole-body PET/CT was acquired at 120 min after injection in 2 MTC patients. Results: Irrespective of the metal or radiometal used (copper, gallium, lutetium), high CCK-2R affinity (half-maximal inhibitory concentration, 3.6-6.0 nM) and favorable lipophilicity were determined. In vivo, increased numbers of intact peptide were found for [177Lu]Lu-DOTA-CCK-66 compared with [177Lu]Lu-DOTA-MGS5 in murine urine (23.7% ± 9.2% vs. 77.8% ± 2.3%). Overall tumor-to-background ratios were similar for both 177Lu-labeled analogs. [67Ga]Ga-DOTA-CCK-66 exhibited accumulation (percentage injected dose per gram) that was high in tumor (19.4 ± 3.5) and low in off-target areas (blood, 0.61 ± 0.07; liver, 0.31 ± 0.02; pancreas, 0.23 ± 0.07; stomach, 1.81 ± 0.19; kidney, 2.51 ± 0.49) at 1 h after injection. PET/CT examination in 2 MTC patients applying [68Ga]Ga-DOTA-CCK-66 confirmed multiple metastases. Conclusion: Because of the high in vivo stability and favorable overall preclinical performance of [nat/67Ga]Ga-/[nat/177Lu]Lu-DOTA-CCK-66, a proof-of-concept clinical investigation of [68Ga]Ga-DOTA-CCK-66 was completed. As several lesions could be identified and excellent biodistribution patterns were observed, further patient studies applying [68Ga]Ga- and [177Lu]Lu-DOTA-CCK-66 are warranted.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Glândula Tireoide , Humanos , Animais , Camundongos , Radioisótopos de Gálio/química , Distribuição Tecidual , Cobre , Camundongos SCID , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Receptor de Colecistocinina B/metabolismo
11.
Eur J Nucl Med Mol Imaging ; 51(3): 625-640, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37878029

RESUMO

PURPOSE: Due to tumor heterogeneity, immunohistochemistry (IHC) showed poor accuracy in detecting the expression of programmed cell death ligand-1 (PD-L1) in patients. Positron emission tomography (PET) imaging is considered as a non-invasive technique to detect PD-L1 expression at the molecular level visually, real-timely and quantitatively. This study aimed to develop novel peptide-based radiotracers [68Ga]/[18F]AlF-NOTA-IMB for accurately detecting the PD-L1 expression and guiding the cancer immunotherapy. METHODS: NOTA-IMB was prepared by connecting 2,2'-(7-(2-((2,5-dioxopyrrolidin-1-yl)oxy)- 2-oxoethyl)-1,4,7-triazonane-1,4-diyl) diacetic acid (NOTA-NHS) with PD-L1-targeted peptide IMB, and further radiolabeled with 68Ga or 18F-AlF. In vitro binding assay was conducted to confirm the ability of [68Ga]/[18F]AlF-NOTA-IMB to detect the expression of PD-L1. In vivo PET imaging of [68Ga]NOTA-IMB and [18F]AlF-NOTA-IMB in different tumor-bearing mice was performed, and dynamic changes of PD-L1 expression level induced by immunotherapy were monitored. Radioautography, western blotting, immunofluorescence staining and biodistribution analysis were carried out to further evaluate the specificity of radiotracers and efficacy of PD-L1 antibody immunotherapy. RESULTS: [68Ga]NOTA-IMB and [18F]AlF-NOTA-IMB were both successfully prepared with high radiochemical yield (> 95% and > 60%, n = 5) and radiochemical purity (> 95% and > 98%, n = 5). Both tracers showed high affinity to human and murine PD-L1 with the dissociation constant (Kd) of 1.00 ± 0.16/1.09 ± 0.21 nM (A375-hPD-L1, n = 3) and 1.56 ± 0.58/1.21 ± 0.39 nM (MC38, n = 3), respectively. In vitro cell uptake assay revealed that both tracers can specifically bind to PD-L1 positive cancer cells A375-hPD-L1 and MC38 (5.45 ± 0.33/3.65 ± 0.15%AD and 5.87 ± 0.27/2.78 ± 0.08%AD at 120 min, n = 3). In vivo PET imaging and biodistribution analysis showed that the tracer [68Ga]NOTA-IMB and [18F]AlF-NOTA-IMB had high accumulation in A375-hPD-L1 and MC38 tumors, but low uptake in A375 tumor. Treatment of Atezolizumab induced dynamic changes of PD-L1 expression in MC38 tumor-bearing mice, and the tumor uptake of [68Ga]NOTA-IMB decreased from 3.30 ± 0.29%ID/mL to 1.58 ± 0.29%ID/mL (n = 3, P = 0.026) after five treatments. Similarly, the tumor uptake of [18F]AlF-NOTA-IMB decreased from 3.27 ± 0.63%ID/mL to 0.89 ± 0.18%ID/mL (n = 3, P = 0.0004) after five treatments. However, no significant difference was observed in the tumor uptake before and after PBS treatment. Biodistribution, radioautography, western blotting and immunofluorescence staining analysis further demonstrated that the expression level of PD-L1 in tumor-bearing mice treated with Atezolizumab significantly reduced about 3 times and correlated well with the PET imaging results. CONCLUSION: [68Ga]NOTA-IMB and [18F]AlF-NOTA-IMB were successfully prepared for PET imaging the PD-L1 expression noninvasively and quantitatively. Dynamic changes of PD-L1 expression caused by immunotherapy can be sensitively detected by both tracers. Hence, the peptide-based radiotracers [68Ga]NOTA-IMB and [18F]AlF-NOTA-IMB can be applied for accurately detecting the PD-L1 expression in different tumors and monitoring the efficacy of immunotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Camundongos , Animais , Antígeno B7-H1/metabolismo , Distribuição Tecidual , Radioisótopos de Gálio/química , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Peptídeos/metabolismo , Imunoterapia , Neoplasias/diagnóstico por imagem , Neoplasias/terapia
12.
Mol Pharm ; 21(1): 255-266, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38093483

RESUMO

Immune checkpoint inhibitors (ICIs) therapy based on programmed cell death ligand 1 (PD-L1) has shown significant development in treating several carcinomas, but not all patients respond to this therapy due to the heterogeneity of PD-L1 expression. The sensitive and accurate quantitative analysis of in vivo PD-L1 expression is critical for treatment decisions and monitoring therapy. In the present study, an aptamer-based dual-modality positron emission tomography/near-infrared fluorescence (PET/NIRF) imaging probe was developed, and its specificity and sensitivity to PD-L1 were assessed in vitro and in vivo. The probe precursor NOTA-Cy5-R1 was prepared by using automated solid-phase oligonucleotide synthesis. PET/NIRF dual-modality probe [68Ga]Ga-NOTA-Cy5-R1 was successfully synthesized and radiolabeled. The binding specificity of [68Ga]Ga-NOTA-Cy5-R1 to PD-L1 was evaluated by flow cytometry, fluorescence imaging, and cellular uptake in A375-hPD-L1 and A375 cells, and it showed good fluorescence properties and stability in vitro. In vivo PET/NIRF imaging studies illustrated that [68Ga]Ga-NOTA-Cy5-R1 can sensitively and specifically bind to PD-L1 positive tumors. Meanwhile, the rapid clearance of probes from nontarget tissues achieved a high signal-to-noise ratio. In addition, changes of PD-L1 expression in NCI-H1299 xenografts treated with cisplatin (CDDP) were sensitivity monitored by [68Ga]Ga-NOTA-Cy5-R1 PET imaging, and ex vivo autoradiography and western blot analyses correlated well with the change of PD-L1 expression in vivo. Overall, [68Ga]Ga-NOTA-Cy5-R1 showed notable potency as a dual-modality PET/NIRF imaging probe for visualizing tumors and monitoring the dynamic changes of PD-L1 expression, which can help to direct and promote the clinical practice of ICIs therapy.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Radioisótopos de Gálio/química , Tomografia por Emissão de Pósitrons/métodos , Anticorpos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
13.
Mol Pharm ; 21(1): 245-254, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38096423

RESUMO

Assessing CD38 expression in vivo has become a significant element in multiple myeloma (MM) therapy, as it can be used to detect lesions and forecast the effectiveness of treatment. Accurate diagnosis requires a multifunctional, high-throughput probe screening platform to develop molecular probes for tumor-targeted multimodal imaging and treatment. Here, we investigated a microarray chip-based strategy for high-throughput screening of peptide probes for CD38. We obtained two new target peptides, CA-1 and CA-2, from a 105 peptide library with a dissociation constant (KD) of 10-7 M. The specificity and affinity of the target peptides were confirmed at the molecular and cellular levels. Peptide probes were labeled with indocyanine green (ICG) dye and 68Ga-DOTA, which were injected into a CD38-positive Ramos tumor-bearing mouse via its tail vein, and small animal fluorescence and positron emission tomography (PET) imaging showed that the peptide probes could show specific enrichment in the tumor tissue. Our study shows that a microchip-based screening of peptide probes can be used as a promising imaging tool for MM diagnosis.


Assuntos
Mieloma Múltiplo , Camundongos , Animais , Mieloma Múltiplo/diagnóstico por imagem , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Peptídeos/química , Imagem Multimodal/métodos , Radioisótopos de Gálio/química
14.
Mol Imaging Biol ; 26(2): 322-333, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38110791

RESUMO

PURPOSE: Inflammatory bowel disease (IBD) can be imaged with positron emission tomography (PET), but existing PET radiopharmaceuticals have limited diagnostic accuracy. Vascular adhesion protein-1 (VAP-1) is an endothelial cell surface molecule that controls leukocyte extravasation into sites of inflammation. However, the role of inflammation-induced VAP-1 expression in IBD is still unclear. Therefore, this study investigated the utility of VAP-1-targeted [68Ga]Ga-DOTA-Siglec-9 positron emission tomography/computed tomography (PET/CT) for assessing inflammation in two mouse models of IBD. PROCEDURES: Studies were performed using K8-/- mice that develop a chronic colitis-phenotype and C57Bl/6NCrl mice with acute intestinal inflammation chemically-induced using 2.5% dextran sodium sulfate (DSS) in drinking water. In both diseased and control mice, uptake of the VAP-1-targeting peptide [68Ga]Ga-DOTA-Siglec-9 was assessed in intestinal regions of interest using in vivo PET/CT, after which ex vivo gamma counting, digital autoradiography, and histopathological analyses were performed. Immunofluorescence staining was performed to determine VAP-1-expression in the intestine, including in samples from patients with ulcerative colitis. RESULTS: Intestinal inflammation could be visualized by [68Ga]Ga-DOTA-Siglec-9 PET/CT in two murine models of IBD. In both models, the in vivo PET/CT and ex vivo studies of [68Ga]Ga-DOTA-Siglec-9 uptake were significantly higher than in control mice. The in vivo uptake was increased on average 1.4-fold in the DSS model and 2.0-fold in the K8-/- model. Immunofluorescence staining revealed strong expression of VAP-1 in the inflamed intestines of both mice and patients. CONCLUSIONS: This study suggests that the VAP-1-targeting [68Ga]Ga-DOTA-Siglec-9 PET tracer is a promising tool for non-invasive imaging of intestinal inflammation. Future studies in patients with IBD and evaluation of the potential value of [68Ga]Ga-DOTA-Siglec-9 in diagnosis and monitoring of the disease are warranted.


Assuntos
Compostos Heterocíclicos com 1 Anel , Doenças Inflamatórias Intestinais , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Camundongos , Animais , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radioisótopos de Gálio/química , Modelos Animais de Doenças , Tomografia por Emissão de Pósitrons/métodos , Inflamação , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/química , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/farmacologia
15.
Ann Nucl Med ; 38(4): 247-263, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38145430

RESUMO

INTRODUCTION: Functions of existing automatic module systems for synthesis of radiopharmaceuticals mainly focus on the radiolabeling of small molecules. There are few modules which have achieved full-automatic radiolabeling of non-metallic and metallic nuclides on small molecules, peptides, and antibody drugs. This study aimed to develop and test a full-automatic multifunctional module system for the safe, stable, and efficient production of radiopharmaceuticals. METHODS: According to characteristics of labeling process of radioactive drugs, using UG and Solidworks softwares, full-automatic cassette-based synthesis module system Mortenon M1 for synthesis of radiopharmaceuticals with various radionuclides, was designed and tested. Mortenon M1 has at least three significant highlights: the cassettes are disposable, and there is no need of manual cleaning; the synthesis method program is flexible and can be edited freely by users according to special needs; this module system is suitable for radiolabeling of both small-molecule and macromolecular drugs, with potentially various radionuclides including 18F, 64Cu, 68Ga, 89Zr, 177Lu, etc. By program control methods for certain drugs, Mortenon M1 was used for radiolabeling of both small-molecule drugs such as [68Ga]-FAPI-46 and macromolecular drugs such as [89Zr]-TROP2 antibody. Quality control assays for product purity were performed with radio-iTLC and radio-HPLC, and the radiotracers were confirmed for application in microPET imaging in xenograft tumor-bearing mouse models. RESULTS: Functional tests for Mortenon M1 module system were conducted, with [68Ga]-FAPI-46 and [89Zr]-TROP2 antibody as goal synthetic products, and it displayed that with the cassette modules, the preset goals could be achieved successfully. The radiolabeling synthesis yield was good ([68Ga]-FAPI-46, 70.63% ± 2.85%, n = 10; [89Zr]-TROP2, 82.31% ± 3.92%, n = 10), and the radiochemical purity via radio-iTLC assay of the radiolabeled products was above 99% after purification. MicroPET imaging results showed that the radiolabeled tracers had reasonable radioactive distribution in MDA-MB-231 and SNU-620 xenograft tumor-bearing mice, and the tumor targeted radiouptake was satisfactory for diagnosis. CONCLUSION: This study demonstrated that the full-automatic module system Mortenon M1 is efficient for radiolabeling synthesis of both small-molecule and macromolecular substrates. It may be helpful to reduce radiation exposure for safety, provide qualified radiolabeled products and reliable PET diagnosis, and ensure stable production and supply of radiopharmaceuticals.


Assuntos
Neoplasias , Compostos Radiofarmacêuticos , Humanos , Animais , Camundongos , Compostos Radiofarmacêuticos/química , Radioisótopos de Gálio/química , Radioisótopos/química , Peptídeos , Anticorpos
16.
J Nucl Cardiol ; 30(6): 2760-2772, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37758963

RESUMO

BACKGROUND: Vascular adhesion protein-1 (VAP-1) is an adhesion molecule and primary amine oxidase, and Gallium-68-labeled 1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetra-acetic acid conjugated sialic acid-binding immunoglobulin-like lectin 9 motif containing peptide ([68Ga]Ga-DOTA-Siglec-9) is a positron emission tomography (PET) tracer targeting VAP-1. We evaluated the feasibility of PET imaging with [68Ga]Ga-DOTA-Siglec-9 for the detection of myocardial lesions in rats with autoimmune myocarditis. METHODS: Rats (n = 9) were immunized twice with porcine cardiac myosin in complete Freund's adjuvant. Control rats (n = 6) were injected with Freund's adjuvant alone. On day 21, in vivo PET/computed tomography (CT) imaging with [68Ga]Ga-DOTA-Siglec-9 was performed, followed by ex vivo autoradiography, histology, and immunohistochemistry of tissue sections. In addition, myocardial samples from three patients with cardiac sarcoidosis were studied. RESULTS: [68Ga]Ga-DOTA-Siglec-9 PET/CT images of immunized rats showed higher uptake in myocardial lesions than in myocardium outside lesions (SUVmean, 0.5 ± 0.1 vs 0.3 ± 0.1; P = .003) or control rats (SUVmean, 0.2 ± 0.03; P < .0001), which was confirmed by ex vivo autoradiography of tissue sections. Immunohistochemistry showed VAP-1-positive staining in lesions of rats with myocarditis and in patients with cardiac sarcoidosis. CONCLUSION: VAP-1-targeted [68Ga]Ga-DOTA-Siglec-9 PET is a potential novel technique for the detection of myocardial lesions.


Assuntos
Miocardite , Sarcoidose , Humanos , Ratos , Animais , Suínos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos de Gálio/química , Miocardite/diagnóstico por imagem , Adjuvante de Freund , Tomografia Computadorizada por Raios X , Tomografia por Emissão de Pósitrons/métodos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/química
17.
Nucl Med Biol ; 124-125: 108381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37634398

RESUMO

BACKGROUND: PET/CT imaging of glucagon-like peptide receptor 1 has recently filled a gap in reliably diagnosing insulinoma through non-invasive means. 68Ga-labelled derivatives of exendin-4 show high sensitivity as well as sufficient serum stability to enable routine clinical application. Here, we provide data for automated production of [68Ga][Nle14,Lys40(Ahx-DOTA-Ga)NH2]exendin-4 ([68Ga]Ga-DOTA-exendin-4) on a cassette based synthesis module (Modular-Lab PharmTracer, Eckert & Ziegler) using commercially available cassettes in combination with an approved 68Ge/68Ga generator (GalliaPharm, Eckert & Ziegler). This setup ensured high reproducibility as well as low radiation burden for the production team. Quality control including determination of radiochemical purity was performed by RP-HPLC using a water/0.1 % TFA/acetonitrile gradient on a C18 column. A modified TLC system with ammonium acetate & methanol as mobile phase and a novel limit test for determination of polysorbate 80 content in the final formulation are also described in this study. MAIN FINDINGS: Reliable yields as well as high molar activity for patient use were only achieved using a fractionated elution approach. Batch data showed radiochemical purity of >93 % as determined by RP-HPLC and TLC as well as good stability over 2 h post production. Testing for polysorbate 80 confirmed a concentration <1 mg/mL in the final product solution. Specifications for routine production were established based on existing Pharmacopeia monographs for other radiopharmaceuticals and were validated with 5 master batches. CONCLUSION: The described synthesis method enables reproducible, automated in-house production of [68Ga]Ga-DOTA-exendin-4 for routine clinical application.


Assuntos
Radioisótopos de Gálio , Neoplasias Pancreáticas , Humanos , Exenatida/química , Radioisótopos de Gálio/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Geradores de Radionuclídeos , Reprodutibilidade dos Testes , Polissorbatos , Compostos Radiofarmacêuticos/química
18.
Drug Dev Res ; 84(7): 1513-1521, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37571805

RESUMO

Noninvasive imaging techniques for the early detection of infections are in high demand. In this study, we present the development of an infection imaging agent consisting of the antimicrobial peptide fragment UBI (31-38) conjugated to the chelator 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA), which allows for labeling with the positron emitter Ga-68. The preclinical evaluation of [68 Ga]Ga-NODAGA-UBI (31-38) was conducted to investigate its potential for imaging bacterial infections caused by Staphylococcus aureus. The octapeptide derived from ubiquicidin, UBI (31-38), was synthesized and conjugated with the chelator NODAGA. The conjugate was then radiolabeled with Ga-68. The radiolabeling process and the stability of the radio formulation were confirmed through chromatography. The study included both in vitro evaluations using S. aureus and in vivo evaluations in an animal model of infection and inflammation. Positron emission tomography (PET) and Cherenkov luminescence imaging (CLI) were performed to visualize the targeted localization of the radio formulation at the site of infection. Ex vivo biodistribution studies were carried out to quantify the uptake of the radio formulation in different organs and tissues. Additionally, the uptake of [18 F]Fluorodeoxyglucose ([18 F] FDG) in the animal model was also studied for comparison. The [68 Ga]Ga-NODAGA-UBI (31-38) complex consistently exhibited high radiochemical purity (>90%) after formulation. The complex demonstrated stability in saline, phosphate-buffered saline, and human serum for up to 3 h. Notably, the complex displayed significantly higher uptake in S. aureus, which was inhibited in the presence of unconjugated UBI (29-41) peptide, confirming the specificity of the formulation for bacterial membranes. Bacterial imaging capability was also observed in PET and CLI images. Biodistribution results indicated a substantial target-to-nontarget ratio of approximately 4 at 1 h postinjection of the radio formulation. Conversely, the uptake of [18 F]FDG in the animal model did not allow for the discrimination of infected and inflamed sites. Our studies have demonstrated that [68 Ga]Ga-NODAGA-UBI (31-38) holds promise as a radiotracer for imaging bacterial infections caused by S. aureus.


Assuntos
Radioisótopos de Gálio , Infecções Estafilocócicas , Animais , Humanos , Radioisótopos de Gálio/química , Fluordesoxiglucose F18 , Staphylococcus aureus , Distribuição Tecidual , Luminescência , Tomografia por Emissão de Pósitrons/métodos , Infecções Estafilocócicas/diagnóstico por imagem , Quelantes
19.
J Am Chem Soc ; 145(29): 16261-16270, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37434328

RESUMO

Activation of metalloprodrugs or prodrug activation using transition metal catalysts represents emerging strategies for drug development; however, they are frequently hampered by poor spatiotemporal control and limited catalytic turnover. Here, we demonstrate that metal complex-mediated, autolytic release of active metallodrugs can be successfully employed to prepare clinical grade (radio-)pharmaceuticals. Optimization of the Lewis-acidic metal ion, chelate, amino acid linker, and biological targeting vector provides means to release peptide-based (radio-)metallopharmaceuticals in solution and from the solid phase using metal-mediated, autolytic amide bond cleavage (MMAAC). Our findings indicate that coordinative polarization of an amide bond by strong, trivalent Lewis acids such as Ga3+ and Sc3+ adjacent to serine results in the N, O acyl shift and hydrolysis of the corresponding ester without dissociation of the corresponding metal complex. Compound [68Ga]Ga-10, incorporating a cleavable and noncleavable functionalization, was used to demonstrate that only the amide bond-adjacent serine effectively triggered hydrolysis in solution and from the solid phase. The corresponding solid-phase released compound [68Ga]Ga-8 demonstrated superior in vivo performance in a mouse tumor model compared to [68Ga]Ga-8 produced using conventional, solution-phase radiolabeling. A second proof-of-concept system, [67Ga]Ga-17A (serine-linked) and [67Ga]Ga-17B (glycine-linked) binding to serum albumin via the incorporated ibuprofen moiety, was also synthesized. These constructs demonstrated that complete hydrolysis of the corresponding [68Ga]Ga-NOTA complex from [67Ga]Ga-17A can be achieved in naïve mice within 12 h, as traceable in urine and blood metabolites. The glycine-linked control [68Ga]Ga-17B remained intact. Conclusively, MMAAC provides an attractive tool for selective, thermal, and metal ion-mediated control of metallodrug activation compatible with biological conditions.


Assuntos
Amidas , Complexos de Coordenação , Camundongos , Animais , Radioisótopos de Gálio/química , Preparações de Ação Retardada , Metais/química , Complexos de Coordenação/química , Catálise
20.
Mol Pharm ; 20(7): 3519-3528, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37265006

RESUMO

PET imaging of the glucagon-like peptide-1 receptor (GLP-1R) using radiolabeled exendin is a promising imaging method to detect insulinomas. However, high renal accumulation of radiolabeled exendin could hamper the detection of small insulinomas in proximity to the kidneys and limit its use as a radiotherapeutic agent. Here, we report two new exendin analogues for GLP-1R imaging and therapy, designed to reduce renal retention by incorporating a cleavable methionine-isoleucine (Met-Ile) linker. We examined the renal retention and insulinoma targeting properties of these new exendin analogues in a nude mouse model bearing subcutaneous GLP-1R-expressing insulinomas. NOTA or DOTA was conjugated via a methionine-isoleucine linker to the C-terminus of exendin-4 (NOTA-MI-exendin-4 or DOTA-MI-exendin-4). NOTA- and DOTA-exendin-4 without the linker were used as references. The affinity for GLP-1R was determined in a competitive binding assay using GLP-1R transfected cells. Biodistribution of [68Ga]Ga-NOTA-exendin-4, [68Ga]Ga-NOTA-MI-exendin-4, [177Lu]Lu-DOTA-exendin-4, and [177Lu]Lu-DOTA-MI-exendin-4 was determined in INS-1 tumor-bearing BALB/c nude mice, and PET/CT was acquired to visualize renal retention and tumor targeting. For all tracers, dosimetric calculations were performed to determine the kidney self-dose. The affinity for GLP-1R was in the low nanomolar range (<11 nM) for all peptides. In vivo biodistribution revealed a significantly lower kidney uptake of [68Ga]Ga-NOTA-MI-exendin-4 at 4 h post-injection (p.i.) (34.2 ± 4.2 %IA/g), compared with [68Ga]Ga-NOTA-exendin-4 (128 ± 10 %IA/g). Accumulation of [68Ga]Ga-NOTA-MI-exendin-4 in the tumor was 25.0 ± 8.0 %IA/g 4 h p.i., which was similar to that of [68Ga]Ga-NOTA-exendin-4 (24.9 ± 9.3 %IA/g). This resulted in an improved tumor-to-kidney ratio from 0.2 ± 0.0 to 0.8 ± 0.3. PET/CT confirmed the findings in the biodistribution studies. The kidney uptake of [177Lu]Lu-DOTA-MI-exendin-4 was 39.4 ± 6.3 %IA/g at 24 h p.i. and 13.0 ± 2.5 %IA/g at 72 h p.i., which were significantly lower than those for [177Lu]Lu-DOTA-exendin-4 (99.3 ± 9.2 %IA/g 24 h p.i. and 45.8 ± 3.9 %IA/g 72 h p.i.). The uptake in the tumor was 7.8 ± 1.5 and 11.3 ± 2.0 %IA/g 24 h p.i. for [177Lu]Lu-DOTA-MI-exendin-4 and [177Lu]Lu-DOTA-exendin-4, respectively, resulting in improved tumor-to-kidney ratios for [177Lu]Lu-DOTA-MI-exendin-4. The new exendin analogues with a Met-Ile linker showed 2-3-fold reduced renal retention and improved tumor-to-kidney ratios compared with their reference without the Met-Ile linker. Future studies should demonstrate whether [68Ga]Ga-NOTA-MI-exendin-4 results in improved detection of small insulinomas in close proximity to the kidneys with PET/CT. [177Lu]Lu-DOTA-MI-exendin-4 might open a window of opportunity for exendin-based radionuclide therapy.


Assuntos
Insulinoma , Neoplasias Pancreáticas , Camundongos , Animais , Exenatida/química , Insulinoma/diagnóstico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos de Gálio/química , Camundongos Nus , Distribuição Tecidual , Isoleucina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Rim/metabolismo , Metionina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...